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INTRODUCTION 

 The phase-space coordinates of a particle are in one-to-one correspondence with the 

initial conditions which determine its classical motion, i.e. its world-line. Hence the phase 

space can be identified with either the set of all initial conditions or the set of worldliness of 

the classical particle. the physical case s = 3, i.e. three- dimensional space. Our approach will 

be to leave space-time intact and, instead, consider its group of symmetries, the Poincare 

group, which is defined as follows: Let u be a four vector. We denote its time component 

(with respect to an arbitrary reference frame) by u0 and its space components by u= (u1, u2, 

u3).  

 The component connected to the identify (whose elements reverse neither the 

orientations of time nor of space) is called the restricted Lorentz group and denoted by L0. If 

we let ou cu  , so that 4 4uv u v u v    , we can identify L0 with SO(3,1)+. The Poincare 

group P is defined as the set of all Lorentz transformations combined with spacetime. 

 The classical phase space resulted from the Weyl-Heisenberg group W, which, unlike 

Po was not a symmetry group of the theory but merely a Lie group generated by the 

fundamental dynamical observables of position and momentum at a fixed time. We will now 

see that W is related to the non-relativistic limit of Po in two distinct ways: as a normal 

subgroup, and as a homogeneous space. This insight will play a key role in generalizing the 

canonical coherent states to the relativistic case. 
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Galilean Frames  

The general case where the configuration space is IRs instead of IR3. For simplicity, we 

restrict ourselves to spinless particles. It is not difficult to include spin, as will be shown later. 

The states of such particles are described by complex-valued wave functions f(x.t) of position 

x and time t which are square-integrable with respect to x at any time t. Their evolution in 

time is given by the Schrödinger equation 
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is the Hamiltonian operator, and   is the Laplacian acting on L2 (IRs). Since H is self-

adjoint, though unbounded, the solutions are given through the unitary one-parameter group  

( ) exp( )U t itH  : 
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where it is assumed that f(x,0), hence also its Fourier transform ˆ( )f p , is in L2(IRs). 

Relativistic Frames 

 The (unique) relativistically covariant statement of this condition gives rise to a 

canonical complexification of spacetime which embodies in its geometry the structure of 

quantum mechanics as well as that of Special Relativity. The complex spacetime also has the 

structure of a classical phase space underlying the quantum system under consideration. The 

Klein-Gordon equation, which describes a simple relativistic particle in the same way that 

the Schrödinger equation describes a non-relativistic particle. The spectral condition will 

enable us to analytically continue the solutions of this equation to complex spacetime, and 
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the evaluation maps on the space of these analytic solutions will be bounded linear 

functionals, giving rise to a reproducing kernel. 

 Our formalism extends them to z = x – iy, with the new parameters y playing the role 

of a control vector for the energy-momentum observables. Thus, in place of a set of pairs of 

canonically conjugate observables Xk, Pk. we have a set of observables P  and a dual set of 

complex parameters z  . The symmetry between position- and momentum operators in the 

non-relativistic theory was based on the Weyl-Heisenberg group, and we have seen that this 

symmetry is "accidental," being broken in the transition to relativity.  

The reproducing kernel by itself is of limited use. Although it makes it possible to 

establish the interpretation of   as an extended classical phase space, it does not provide us 

with a direct physical interpretation of the function values f(x). The inner product in k is 

borrowed from 2( )L dp
 hence a probability interpretation exists, so far, only in momentum 

space. In the standard formulation of Klein-Gordon theory, it is possible to define the inner 

product in configuration space, but the corresponding density turns out not to be positive, 

thus precluding a probabilistic interpretation. This is one of the well-known difficulties with 

the first quantized Klein-Gordon theory, and is one of the reasons cited for the necessity to 

go to quantum field theory (second quantization. We will see that the phase-space approach 

does admit a covariant probabilistic picture of relativistic quantum mechanics, thus making 

the theory more complete even before second quantization. These topics will be discussed 

further in the next section and the next chapter. At this point we wish only to define an 

"autonomous" inner product on K as an integral over a "phase space" lying in  . This will 

provide us with a normal frame of evaluation. 

Geometry and Probability  

 It is therefore reasonable to expect that   and d  merely represent one choice out of 

many. Our purpose here is to construct a large natural class of such phase spaces and 

associated measures to which our previous results can be extended. This class will include   

and will be invariant under Po. In this way our formalism is freed from its dependence on   

and becomes manifestly covariant. As a byproduct, we find that positive energy solutions of 
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the Klein-Gordon equation give rise to a conserved probability current, so the probabilistic 

interpretation becomes entirely compatible with the spacetime geometry. 

 The relativistic quantum mechanics (RQH) is any Poincare’ Covariant 

formulation of quantum mechanics. It is valid for massive particle for all velocities upto 

velocity of light and accommodated to massless particles. This theory has very wider 

applications in particle physics, acceleration physics high energy physics, condensed matter 

physics, atomic physics and chemistry. 

Before RQM, for getting prediction of antimatter, spin magnetic moments of 

elementary spin ½ fermions, quantum dynamics of charged particles in electromagnetic fields 

and fine structure, terms have to be introduced artificially into the Hamiltonian operator to 

achieve agreement with the experimental observations facts. 

Space and time 

In non-relativistic QM one has for a many particle system 1 2 2( , ,...., , , ....)r r t   while 

in relativistic mechanics, the spatial coordinates(r) and temporal coordinate (t) are not 

absolute. The position and time coordinates combine naturally into a four dimensional space-

time position X(ct, r) corresponding to events, and the energy and 3 momentum combine 

naturally into the four momentum  ,
EP P
c

of  a dynamic particle, as measured in some 

reference frame, change according to a Lorentz transformation as one measures in a different 

frame boosted and/or rotated relative the original frame is consideration. 
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